11/	
10	X
Mat	h 4

5-2 Difference Quotients and Rates of Change

Name	
	Date

In this Activity, you will be working towards the following learning goals: I can compute and interpret average rates of change in functions I can calculate and use the difference quotient for a function

VIDEOS: "What is Calculus?" http://www.youtube.com/watch?v=ismnD_QHKkQ
"A Brief Introduction to Calculus" http://www.youtube.com/watch?v=6gvtr H1h90

Answer the questions based off of the videos:

1. What is calculus?

The Mathematics of charge

2. What is a difference between algebra & calculus?

Algebra! More regular, less real real life applications Colculus: Less regular, more real real life applications

- 3. Since what year has calculus been around?
- 4. What were the main problems Newton & Leibniz were concerned about solving?
- 5. "Climbing down the ladder" what tool in calculus? What is happening to the powers?
- 6. "Climbing up the ladder" what tool in calculus? What is happening to the powers?
- 7. The two components of calculus are: _____ & ____

Please meet with your group members & discuss your answers.

SKIPI

II. In this portion of the lesson, you will investigate rates of change. Plot the following data points on the graph below. Then answer the questions.

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Average High Temp. in ° F	34	37	46	56	68	77	81	80	74	63	51	40

2. What Greek letter is used to represent change? _____ \(\triangle \) (Del+a) In symbols, change in month x_1 to month $x_2 = X - X = \Delta x$ In symbols, change in temp y_1 to temp $y_2 = \underbrace{1}_{0} - \underbrace{1}_{0} = \underbrace{1}_{0} - \underbrace{1}_{$

3. The average rate of change is found by dividing the changes.

Average Rate of Change
$$(A_{RoC}) = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = (\text{ in function notation}):$$

4. Calculate the following (use the correct units):
$$A_{RoC} \text{ Feb} \rightarrow \text{Jul}:$$

$$A_{RoC} \text{ Feb} \rightarrow \text{Jul}:$$

$$A_{RoC} \text{ Jul} \rightarrow \text{Dec}:$$

$$A_{R$$

April - Dec:

$$A_{ROL} = \frac{40 - 81}{12 - 7} = \frac{-41}{5}$$

$$= \frac{-8.2^{\circ}/mo.}{1}$$

The Geometric Definition of Average Rate of Change:

The slope of the line through $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

***If we connect the two points, we have what is called a secant line for the graph of the function.

$$m_{\text{secant}} = \frac{f(x_{\lambda}) - f(x_{\lambda})}{x_{\lambda} - x_{\lambda}} = \frac{\Delta y}{\Delta x}$$

Example: A projectile follows along a path given by the formula $h(t) = 960t - 16t^2$.

A. Complete the table of values & then graph the path of the object.

t	h(t)
0	0
5	4460
10	8000
15	10800
20	12,800
25	14,000
30	14,400
35	14,000
40	12,800
45	10,800
50	8000
55	4400
60	0

time (in seconds)

B. Use the formula from above to calculate A_{RoC} over the following intervals (use the correct units):

1.)
$$10 \le t \le 20$$

= $\frac{12,600 - 800}{20 - 10} = \frac{4800}{10} = \frac{4800}{1$

$$10 \le t \le 20$$

$$= \frac{12,800 - 800}{20 - 10} = \frac{4800}{10} = \frac{4800}{10} = \frac{14,600 - 12,800}{30 - 20} = \frac{1600}{10} = \frac{160}{10}$$

3.)
$$30 \le t \le 40$$

 $= \frac{12600 - 14400}{40 - 30} = \frac{-1600}{10} = \frac{-1606 + 15}{10} = \frac{-14600}{35 - 25} = \frac{0}{10} = \frac{0}{10}$

$$\frac{25 \le t \le 35}{\frac{|400 - |400}{35 - 25}} = \frac{0}{10} = \frac{0}{41}$$

C. What do your computations in part B tell you about the projectile?

We calculated the projectile's average relocate over the given

D. Use a ruler to draw the secant lines going through the pairs of points. Do the direction of

the lines confirm the signs of your computations in part B?

(es! Postive Slope = positive Apoc Oslope=horizontal Neg Slope = Neg. Apoc Oslope=horizontal

***Average Velocity over an interval – the average rate of change of directed distance.

If average velocity > 0 → The projectile is going _____.

If average velocity < 0 → The projectile is going _____.

If average velocity = 0 > The projectile is at the same height at both times.

<u>Part 3</u>: The concept of A_{RoC} is an important one in mathematics. When many A_{RoC} s have to be calculated for a particular function, f, it helps to have a general formula called the **Difference Quotient**. Below you will derive a general formula to help write the difference quotient for any function, f.

We're going to start by representing the difference quotient geometrically/graphically. Take notes and fill in the boxes within the figure below with equivalent expressions:

Recall:
$$\begin{pmatrix} \text{average rate} \\ \text{of change in} \\ f \text{ from } x_1 \text{ to } x_2 \end{pmatrix} = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Now we're going to use the information from the graph above to write the A_{RoC} equation without the x_2 terms. Remember, $\Delta x = x_2 - x_1$.

Write your new formula here: The **Difference Quotient** = $\frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$ $x_1 + \Delta x - x_1$

Example: Refer to the projectile example, where $h(t) = 960t - 16t^2$. Find a formula for the difference quotient given the average rate of change of h for each interval t to $t + \Delta t$.

***Note: Δt is one variable!

A. Use the results from above and
$$t = 5$$
 to find the average velocity when $\Delta t = ...$

a.) $\Delta t = 1$ change

b.) $\Delta t = .5$ change

c.) $\Delta t = .1$

$$= 960 - 32(5) - 16(1)$$

$$= 960 - 160 - 16$$

$$= 960 - 160 - 16$$

$$= 792 + 15$$

A. Use the results from above and $t = 5$ to find the average velocity when $\Delta t = ...$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$=$$

B. What is happening to the \(\Delta t\) values in part A? What value does the average velocity appear to be approaching? \(\Delta t\) values approaching O. Average velocity approaching

Complete:
$$\lim_{\Delta t \to 0} \left(\frac{h(5 + \Delta t) - h(5)}{\Delta t} \right) = 800$$

Let
$$h(t) = 12t^{2} - 8t$$
. Find $\frac{h(t + \Delta t) - h(t)}{\Delta t}$

$$= 12(t + \Delta t)^{2} - 8(t + \Delta t) - (12t^{2} - 8t)$$

$$= 12(t^{2} + 2t \Delta t + \Delta t^{2}) - 8t - 8\Delta t - (2t^{2} + 8t)$$

$$= 12(t^{2} + 2t \Delta t + \Delta t^{2}) - 8t - 8\Delta t - (2t^{2} + 8t)$$

$$= 12(t^{2} + 2t \Delta t + \Delta t^{2}) - 8t - 8\Delta t + 2t^{2} + 8t$$

$$= 12(t^{2} + \Delta t) + 12\Delta t^{2} - 8\Delta t + 2t^{2} + 8t$$

$$= 24(t^{2} + \Delta t) + 12\Delta t^{2} - 8\Delta t$$

$$= 24(t^{2} + \Delta t) + 12\Delta t^{2} - 8\Delta t$$

$$= 24(t^{2} + \Delta t) + 12\Delta t^{2} - 8\Delta t$$

Let
$$k(t) = 2t^2 + 5t$$
. Find $\frac{k(t + \Delta t) - k(t)}{\Delta t}$

$$= \frac{2(t + \Delta t)^2 + 5(t + \Delta t) - (2t^2 + 5t)}{\Delta t}$$

$$= \frac{2(t^2 + 2t\Delta t + \Delta t^2) + 5t + 5\Delta t - 2t^2 - 5t}{\Delta t}$$

$$= \frac{2(t^2 + 2t\Delta t + \Delta t^2) + 5t + 5\Delta t}{\Delta t}$$

$$= \frac{2t^2 + 4t\Delta t + 2\Delta t^2 + 5\Delta t}{\Delta t}$$

$$= \frac{4t\Delta t + 2\Delta t^2 + 5\Delta t}{\Delta t}$$

$$= \frac{4t\Delta t + 2\Delta t^2 + 5\Delta t}{\Delta t}$$